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Abstract

In materials belonging to the hexagonal crystal family
(hexagonal or trigonal crystal systems), for which the
irrationality arises primarily from the lattice param-
eters, the concept of near-coincidence orientation has
to be introduced in order to characterize experimental
grain boundaries. The practical use of this concept
can be simplified if a twin approach is introduced:
high-2 specific coincidence orientations are
described as a deviation from very low-X twin
orientations defined among a unique set of limiting
2. Consequently, for real hexagonal or trigonal
materials, each orientation relationship defined by a
quaternion (m, u, v, w), all relatively prime integers,
can be described, for any c/a, uniquely by a
quasiperiodic arrangement of elementary ‘twin’ co-
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75231 Paris, France.
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incidences. Experimental cases of interfaces in
hexagonal and rhombohedral crystals (h.c.p. metals,
tungsten carbide, alumina) are analysed.

Introduction

In the past few years great interest has been dedicated
to the study of grain boundaries in materials described
in the hexagonal crystal family. Both theoretical and
experimental results presented have outlined an
emerging field of research where, for instance, mathe-
matical calculation of coincidence orientations
[Bleris, Nouet, Hagége & Delavignette (1982),
Grimmer & Warrington (1987), Hagége & Nouet
(1989) for hexagonal; Doni, Fanides & Bleris (1986),
Grimmer (1989a) for rhombohedral], relaxation of
the structure at the interface (Serra, Bacon & Pond,
1988; Hageége, Mori & Ishida, 1990), grain-boundary
dislocation analysis (Antonopoulos, Karakostas,
Komninou & Delavignette, 1988; Chen & King, 1988;

© 1991 International Union of Crystallography
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Hagége, Chermant & Nouet, 1988) and statistical
determination of the ratio of coincidence orientations
(Grimmer, Bonnet, Lartigue & Priester, 1990) can
interact for a better knowledge of the properties of a
material.

The concept of coincidence orientation is only
related to the mutual rotation of the lattices of the
crystals defining an interface (Bollmann, 1982). This
approach, if meant only as an approach, has been
acknowledged as a sound base for interface studies.
Moreover, in the case of coincidence, the projection
of the periodicity of the common lattice on the boun-
dary plane is a simple physical parameter which can
be associated with the stability of the interface. The
three-dimensional periodicity of a coincidence
orientation is restricted by the principle of rationality
of the nine elements of the rotation matrix (Grimmer,
1976) and consequently of the parameters defining
the interface operation: nature of the lattice for each
crystal (lattice parameters), mutual orientation of the
lattices (rotation axis and angle). For relevant
information on the atomic structure at the interface,
additional parameters have also to be taken into
account: rigid-body translation relating the two crys-
tals, boundary-plane orientation and position, relaxa-
tion of the structure at the interface.

In hexagonal lattices (AP, hR), three-dimensional
exact coincidence orientations occur only for very
particular values of the rotation (generic or so-called
common coincidences) or if the square of the axial
ratio is a rational number (specific coincidences).
Therefore, in materials belonging to the hexagonal
crystal family (hexagonal or trigonal crystal systems),
for which the irrationality arises primarily from the
crystal parameters, the concept of near-coincidence
orientation has to be introduced in order to character-
ize experimental grain boundaries. The practical use
of this concept can be simplified if a twin approach
is introduced as in the first part of this paper: high
X specific coincidence orientations will be described
as a deviation from low-X twin orientations defined
among a unique set of limiting 2. Firstly, the set of
all the coincidence orientations can be classified, and
therefore simplified, by using a ‘twin-plane’ descrip-
tion. In every subset, one for each twin plane, an
infinite succession of limiting coincidence orienta-
tions envelops all the elements of the subset.
Secondly, every element of the subset is deduced by
a unique linear combination of the two nearest (with
reference to c¢/a) limiting coincidence orientations.
Every element of the subset can then be described by
a periodic arrangement of two limiting cases. Every
arrangement is unique and therefore characteristic of
the exact coincidence orientation.

Since the discovery of quasicrystals (Shechtman,
Blech, Gratias & Cahn, 1984) and the revival of
quasiperiodicity, the effect of the irrationality of
certain parameters on the grain-boundary structure

NEAR-COINCIDENCE ORIENTATIONS IN HEXAGONAL MATERIALS

has been the subject of a large number of studies
(Gratias & Thalal, 1988; Rivier & Lawrence, 1988;
Benderski, Cahn & Gratias, 1989; Sutton, 1988). The
irrationality of the rotation angle, the rotation axis
or the boundary plane were their main concern. Fur-
thermore, as in the field of quasicrystals, the rep-
resentation of the bicrystal in a hyperspace has
revealed the crucial duality between order and perio-
dicity at the boundary (Gratias & Thalal, 1988;
Duneau & Oguey, 1989).

Following the same approach for hexagonal
materials (hP, hR), the most obvious example of
irrational symmetry, we would like to demonstrate,
in the second part of this paper, that the concept of
near-coincidence orientation can be better under-
stood from the point of view of quasiperiodicity: each
orientation relationship defined by a quaternion
(m, u, v, w), all relatively prime integers, is described,
for any c¢/a (therefore irrational), uniquely by a
quasiperiodic arrangement of elementary ‘twin’
coincidences.

As a proof of the simplicity and applicability of
this approach we shall, finally, analyse some real
cases of interfaces in hexagonal and rhombohedral
crystals: h.c.p. metals, tungsten carbide, alumina. In
each case the experimental orientation is described
as a quasiperiodic arrangement of elementary twin
coincidences of low energy (typically £ =1,2 or 3).

Exact coincidence orientations

For hexagonal materials the irrationality of the
orientation relationship arises primarily from the
crystal parameters and especially from the value of
(c/a)*>. As demonstrated before, an exact three-
dimensional coincidence orientation® arises for a
given quaternion (m, u, v, w), all integers without
common divisor, and a rational value of (c/a)?
(Grimmer & Warrington, 1987, Hageége & Nouet,
1989; Grimmer, 1989a). The index of coincidence X
is given for hexagonal and rhombohedral lattices
respectively by

hP: 3 =[(v*+ v’ —u)rv+GBm*+wHul/a

for (c/a)*=pu/v
hR: Z=[(u2+vz+uv)2p+(3m2+wz)p,]/ﬁ

for (c/a)*=3u/2p.

a and & are unambiguously defined by specific
selection rules.

If one considers all the proper symmetry operations
which can be applied on each crystal defining an
interface, twelve (hP) or six (hR) equivalent descrip-
tions describe the orientation relationship. To every

* The common coincidence orientations, independent of ¢/a,
are not included in this study.
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equivalent description corresponds a rotation axis
and a rotation angle. It has been found useful to
consider also the plane perpendicular to each rotation
axis (Delavignette, 1983). In the case of twins
(mechanical, growth) the habit plane of the boundary
is often normal to the equivalent rotation axis asso-
ciated with a 180° rotation (twin description). For
this work, this 180° description, and the correspond-
ing axis and normal plane, will be chosen as rep-
resentative of the orientation. If no 180° description
is available, the largest angle of the twelve (or six)
descriptions will be chosen; by extension the normal
plane will still be noted ‘twin’ plane in quotation
marks.

Hexagonal Bravais lattices
For the hP lattice the function 3 = Fh(c/a),
S=[(u+ v -u)r+GBm*+wHu]/a
for (¢/a)’=u/v and g.c.d.(u, v) =1,

(c/a)® being a rational number, can be plotted for
every representative quaternion (m, u, v, w), such as
g.d.c.(m, u, v, w) = 1. Then a unique minimum value
3im appears in a single envelope of X'™. This
envelope is made of two parts, respectively ascending
and descending monotonically, each with its own
periodicity: Py, and Pyig.

Py, is a divisor of (u’+v*—uv) and Py, is a
divisor of (3m?+ w?) with the remarkable property
Z:":lr:]n = Plow+ Phigh'

Every other X case, inside the envelope, is a simple
linear combination of two consecutive "™ with a
very simple rule based on the same linear combination
connecting all the relevant characteristics of the
coincidence rule: X, u/v and all the parameters of
the equivalent rotations.

Fig. 1 represents the plot of Fh for the quaternion
(0,2, 1,1) which describes the (1012) mechanical twin
for h.c.p. metals:

2=(3V+/-")/aa a=10r3’ Plow=Phigh=1'
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Fig. 1. Plot of Fh for the (1012) mechanical twin: m, u, v, w=0,
2,1,1; 0<c/a<5 and X up to 60, 3*=3Im =2 appears for
(¢/a)?=3.

and
er:lnn = I)Iow+ Phigh =2.

An infinite series of values "™ with periodicity 1 on
both sides of 1T contains all the other values of 3.

As (¢/a)’=p/v and g.c.d. (u, v) =1, there is only
one possible value of X for each axial ratio; therefore
two successive "™ define a domain of Fh in which
a particular value of X' is defined as a linear combina-
tion of these two successive 3'™,

As an example, one possible representation of the
(1012) mechanical twin for a metal such as zinc
(Hageége, 1989) is the exact three-dimensional coin-
cidence case X =28and u/v =45/13 or ¢/a =1-8605.
This case is found in Fig. 1 by the following linear
decomposition:

Asc/a=1-860sisinbetween X =2, u/v=3/1,c/a=
1:732, and =3, u/v=6/1, c/a=2-449,

2+3=5
3+6=9,1+1=2

then 3 =5
then u/v=9/2
and c¢/a=2-1214;

As ¢/a=1-8605 is in between X =2, u/v=3/1,
¢/a=1-732, and X =5, u/v=9/2, ¢/a=2-121,,

2+5=7
3+49=12,1+2=3

2+7=9
3+12=15,1+3=4

2+9=11
3+15=18,1+4=5

2+11=13
3+18=21,1+5=6

2+13=15
3+21=24,1+6=7

then 2 =7

then w/v=12/3
and ¢/a=2-000,
then £ =9

then w/v=15/4
and c¢/a=1-936,
then 2 =11

then u/v=18/5
and c¢/a=1-897,
then £ =13

then w/v=21/6
and c¢/a=1-870,
then 2 =15

then w/v=24/7
and ¢/a=1-851¢;

As ¢/a=1-860s is in between X =13, u/v=21/6,
c/a=1-870, and £ =15, u/v=24/7, ¢/a=1-851,,

15+13=28

then 2 =28

24+21=45,7+6=13 then u/v=45/13

and c¢/a=1-860s.
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Table 1. Typical cases of twin orientations for an hP lattice and for 2 lim —2: (1011), (1121) twin planes, for

3 =3: (1014), (2241) twin planes, for

(1011) twin plane

min

=4: (1013), (3031) twin planes and the corresponding sets of "™

5 =(3v+dp)a 7 6 5 4 3 2 3 4 5 6 7
nlv 1/8 3/20 3/16 1/4 3/8 3/4 3/2 9/4 3/1 15/4 9/2
or 3/24 3/20 3/16 3/12 3/8 3/4 6/4 9/4 12/4 15/4 18/4
(1121) twin plane
S=(vtdp)/a 7 6 5 4 3 2 3 4 5 6 7
wn/v 1/24 1/20 1/16 1/12 1/8 1/4 1/2 3/4 1/1 5/4 3/2
or 1/24 1/20 1/16 1/12 1/8 1/4 2/4 3/4 4/4 5/4 6/4
(1014) twin plane
S=(12v+p)/a 7 5 3 4 5 6 7
n/v 2/1 3/1 6/1 12/1 18/1 24/1 30/1
or 6/3 6/2 6/1 12/1 18/1 24/1 30/1
(2241) twin plane
I=(v+12u)/ 7 6 5 3 S 7
/v 1/40 1/32 1/24 1/16 1/8 1/4 3/8
or 1/40 1/32 1/24 1/16 1/8 2/8 3/8
(1013) twin plane
I=02Tv+4u)/a 7 4 5 6 7
n/v 9/8 9/4 9/2 27/4 9/1
or 9/8 9/4 18/4 27/4 36/4
(3031) twin plane
I=3v+36u)/a 7 6 4 7
w/v 1/16 1/12 1/4 1/2
or 1/16 1/12 1/4 2/4

Therefore, X =28, u/v=45/13, c¢/a=1-860s is
equivalent to

6x(T=2,u/v=3/1)+1x(XT=3,u/v=6/1)
+S5x (=2, u/v=3/1)+1x(T=3,u/v=6/1)

with the simple rule X =3'+X" pu=u'+pu", v=
v'+v", keeping the two neighbouring cases ' and "
as the two closest (regarding c¢/a) of the final case.
More generally, the series of Z'"™ for g=
...=3,-2,-1,0,1,2,3... is written as:

-q ... q=-3 g=-2 gqg=-1 g=0
w/(Igl+1)v  u/4v w/3v w/2v /v
q=1 q=2 q9=3 ... ¢
S*+P, S*+2P, 3*3P, S*IqIP,
2u/v 3u/v au/v (Il +1)p/v.t

With the above formulation, typical cases of twin
orientations for XM =23 and 4 are detailed in
Table 1 with the formulation of X, the main part of
the sequence of 3"™s and X ur, and the corresponding
axial ratio.

We can conclude at this stage that the knowledge,
for one subset, of the twin plane indices and con-
sequently the quaternion (m =0 for a 180° rotation),
S*=3Mm and Py, Pugn is sufficient to recover all
the relevant parameters of one particular twin orienta-

+ Iql is the absolute value of g, 5* = Shn | Py = Py, Py = Puign-

tion for any c¢/a. It should be noted that only the
indices of the twin plane are in fact necessary, the
quaternion, X*, P, and Py, being derived from
them. Table 2 is a summary of all the relevant informa-
tion covering the field * =7 and contains 42 different
twin boundaries. The values of this table are fully
consistent with those published in Tables 1 and 2 of
Grimmer (1989b).

As a further example, the function Fh has been
plotted in Fig. 2 for four different cases:

(a) 1124 twin, ==(4v+pu)/aq,
})low=2! Phigh=la

(b) 3032twin, T=03v+9u)/q, S*=4, p*/v¥=1/1,
})low=1) Phigh=3t

(c) 9,3,12,1 twin, 3 = (Tv+4p)/e, I*=8, p*/v¥=1/4,
Plow:7) Phigh=1;

(d) 4153 twin, = =(468v+84u)/a, Z*=20, u*/v*=3/1,
P, =13, Phigh =17.

This last case is not a real twin as there is no 180°

description; the largest angle description is a rotation

of 167-2° for the [24 6 3] rotation axis and m=1.

I*=3, u*/v*=2/1,

Rhombohedral Bravais lattice
The function Fr(Z, ¢/ a),
S =[(w*+v*+uv)2p+(Bm*+w)ul/é
for (c/a)*=3u/2p and g.cd. [u, (u—p)/3]1=1,

(¢/ a)? being a rational number, contains, in addition
to the proper rhombohedral coincidence orientations,
all the coincidences of the simple cubic (u/p =1/1),
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Table 2. Twin description of all the coincidence cases in an hP lattice with 3* <7

hkil and uow are respectively the twin plane and the 180° rotation axis; Fh = Z*a; u*/»* is the axial ratio corresponding to £*= X% ;
Pl (P,,,,)+ Ph(Pyz,) = =*, Pl and Ph being the periodicities of Z"™ for (c/a)*< u*/v* (low) and (¢/a)*> u*/v* (high).

Twin plane
3* hkil uvw Fh u*/v*  Pl+Ph

1011 212 3v+ap 3/4 1+1

2 1121 102 v+du 1/4 1+1
1012 211 3vtp 3/1 1+1

1122 101 vu 1/1 1+1

2021 214 3v+16p 3/8 142

3 2241 104 v+16u 1/8 1+2
1014 421 12v+p 6/1 2+1

1124 201 dv+p 2/1 2+1

4041 218 3v+64p 3/16 1+4

4481 108 v+64u 1/16 1+4

2023 634 27v+16p 9/8 3+2

5 2243 304 9y +16u 3/8 3+2
3034 423 12v+9u 2/1 2+3

3364 203 4v+9u 2/3 243

1018 841 48v+p 12/1 4+1

1128 401 16v+pu 4/1 4+1

4043 638 27v+644 9/16 3+4

2025 10,54 75v+16p 15/8 5+2

7 3038 843 48v+9u 4/1 4+3
6061 2,1,12 3v+144p 1/8 1+6

1,0,1,12 12,6,1 108v+p 18/1 6+1

body-centred cubic (u/p=1/4) and face-centred
cubic (u/p =4/1). In particular, when the twin plane
becomes a mirror plane for the corresponding c/a,
the identity appears as X =1. This complicates
slightly the structure of the function Fr and leads in
some rare cases to two EE,‘}’,, both equal and con-
tiguous. The envelope of "™ remains as before con-
tinuous and monotonic on its two parts with the
appropriate periodicity.

The plot of Fr for the rhombohedral twin (01.2)
and for 0<c/a <5 and & up to 20 is represented in
Fig. 3. The envelope of "™ has a dual extremum for
S=1*(u/p=1/1)and T =1°(u/p=4/1), Py,=1
and Pz =1 but I3 is now different from Py, +
Pyign. However, if the particular cases 3 =1 are
excluded from the plot, there remain three indepen-
dent sets of values with, for each of them,

I=2and u/p=2/5; Pow=land Py;=1;
z:i:inn=1)low+ Ppigh=2;

Y=2and u/p=6/3; Pow=1and Py,;=1;
Elri:?n=P|ow+Phigh=2;
Z=2andu/p=10/1, P|0w=1andPhigh=l;
Zli:inn=Plow+Phigh=2-

As an example, the coincidence case X =15 and
n/p=64/13 or ¢c/a=2-7175 is found in Fig. 3 by the
following linear combination:
6x(X=1°u/v=4/1)+1x(ZT=2,u/v=10/1)

+S5x(T=1°%u/v=4/1)+1x(X=2,u/v=10/1)

Twin plane
I* hkil uvw Fh u*/v*  Pl+ Ph

1013 632 27v+4u 9/4 3+1

1123 302 Iv+dp 3/4 3+1

1016 © 631 2Tv+p 9/1 3+1

4 1126 301 I +1p 3/1 3+1
3031 216 3v+36p 1/4 1+3

3361 106 v+36u 1/12 1+3

3032 213 3v+9u 1/1 1+3

3362 103 v+9pu 1/3 143

5051 2,1,10 3v+100g 3/20 1+5

5,5,10,1 1,0,10 v+100p 1/20 1+5

5052 215 3v+25u 3/5 1+5

6 5,5,10,2 105 v+25u 1/5 1+5
1015 10,5,2 TSv+ap 15/4 5+1

1125 502 25v+4p 5/4 5+1

1,0,1,10 10,5,1 Sv+u 15/1 5+1
1,1,2,10 501 25v+p 5/1 5+1

4483 308 9y +64u 3/16 3+4

2245 504 25v+16p 5/8 5+2

7 3368 403 16v+9u 4/3 4+3
6,6,12,1 1,0,12 v+144p 1/24 1+6
1,1,2,12 601 36v+ 6/1 6+1

with the simple rule ¥ =3"+23", u=u"+u", p=
p'+p”, keeping the two neighbouring cases ' and ” as
the two closest (with reference to ¢/a) of the final
case. )

The series of "™ is detailed for some simple cases
in Table 3 and the relevant information for all the
coincidence cases with X =3 is summarized in
Table 4. It appears that for every X"™ the axial ratio
is given by

w/[p(3p)+p] and [u+p(Bu’]l/p

on both sides of 2* =3I defined by u/p and u’, p’
divisor of u,p. p=0 for X* This becomes
w*/[p(3p°)+p*] and [u°+p(3u™)]/p° for the two
dual cases.

In most simple cases (¢f. Table 4), u=pu' and
p =p'; if not the ‘odd rule’ has to be applied on the
corresponding side of X*: low side for u'# u and
high side for p’# p. The odd rule implies that only
the odd values of p are counted.

On both sides of 3* two singular values of X appear
and are noted X, and 2;,,. These X values are
related to the periodicities Py, and Py, by

33%=Piut Phigh’
Sow=2%+P,, and Ehigh=2*+ Pign

and in this case there is a continuity in the periodicity
of "™ on both sides of T*.
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Fig. 2. Plot of Fh for the (a) 1124 twin, Z*=3, u*/v*=2/1;

(b) 3032 twin, I* =4, u*/v*=1/1; (c) 9,3,12,1 twin, T*=38,

w*/v*=1/4; (d) 4153 ‘twin’, T*=20, p*/v*=3/1.
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If the odd rule applies then the relation between

2, Pow and Py, is changed to
33*= 2P+ Phigh or 3X*= Plow+2Phigh
depending on which side the rule is effective
(respectively high and low sides) and
3*=piowt Phigh
Siow=2*+pw and Shigh= I*+ Phigh -

There is in this case an alteration of the periodicity

at the level of X, 2* and 3. As detailed in
Table 3, for the (08.1) twin the odd rule does not

apply:
lS:k

3, 3Z*=9=P|ow+Phigh=l+8,
Sow=2*+P,,=3+1=4,

Shigh= 2%+ Ppigrn=3+8=11;

the sequence of "™ becomes:

6 5 4 3
Plow 2"low >) *

For the (70.1) twin the odd rule applies on the high
side:
b

27

Iﬂﬁgh-

11 19

Ehigh

* _

3X3%=9=2P+t Phgn=2x1+7,

2*=plow+phigh= 1+2
Siow=2*+pow=3+1=4,
Zhigh=2*+ prign=3+2=35;

3,

the sequence of "™ becomes:
6 S 4 3
Piow Sow  2*

Diow

12 19

Pyign

5
2"high

Phigh-

A quasiperiodic description

Obviously, in real materials, (¢/a)* has an irrational
value and coincidences were understood as ‘near

o
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Fig. 3. Plot of Fr for the rhombohedral (01.2) twin; 0 < (c/a)*<5

and 3 up to 20. 3*=3"7 =1 appears twice (1* and 1°) for

w*/p*=1/1(c/a=1224;), p°/p°=4/1 (c/a=2-449;).
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Table 3. Typical cases of twin orientations for an hR  Table 4. Twin description of all the coincidence cases

lattice and Xhm —1: (01.2) and (10.4) twin Iplanes,
Xlm —2: (05.1) and (40.1) twin planes, X =3:
(70.1) and (08.1) twin planes and the corresponding

sets of 2y,
(01.2) twin plane
z 4 3 2 1* 1° 2 3 4
wlp 211 14 2/5 /1 41 10/1 16/1 22/1
2 2 2 3 4 4+6 4+12 4+18
9+2 6+2 3+2 2 1 1 1 1
(10.4) twin plane
2+1
z 7 5 3 1 2 3 4
ulp 25 47 1/1  4/1  16/1 28/1 40/1
4 4 a4 4 4+12 4+24 4+36
9+1 6+1 3+1 1 1 1 1
(05.1) twin plane
1+5
P 5 4 3 2 7 12 17
w/p 1/100  1/70 1/40 1/10 2/5 7/10 1/1
1 1 1 1 1+3 1+6 1+9
90+10 60+10 30+10 10 10 10 10
(40.1) twin plane
1 1+1 4
z 5 4 3 2 3 7 11
nl/p 1/88 1/64 1/40 1/16 1/4 5/8 1/1
g 1 1 1 143 149 1+15
° 72+16 48+16 24+16 16 16 16 16
(70.1) twin plane
1 1+2 7
b3 6 5 4 3 5 12 19
nlp 1/154  1/112  1/70 1/28 1/7  5/14 47
ey 1 1 1 143 149 1415
’ 126+28 84+28 42+28 28 2 28 28
(08.1) twin plane
1 1+8 8
P 6 5 4 3 11 19 27
w/p 17160  1/112  1/64 1/16 1/4 7/16 5/8
1 1 1 i 1+3 1+6 1+9
144+16 96+16 48+16 16 16 16 16

coincidences’: the experimental case being near to
one or other exact coincidence case. However, the
choice of this (these) exact case(s) remains the main
problem. The best compromise was to keep simul-
taneously an acceptably low value of the index of
coincidence X and a difference w/v—(c/a)?, as
small as possible (Hagége & Nouet, 1989). Another
approach was to identify the Burgers vector and/or
the line direction of some intrinsic dislocations at the
boundary and relate the corresponding displacement
shift complete lattice (DSCL) to an exact coincidence
orientation of a given X value (Chen & King, 1988).
Technically, this method is difficult to use systemati-
cally and the discrimination between different cases
remains hazardous.

As an irrational number can always be approxi-
mated by two rational numbers within a chosen pre-
cision, an irrational orientation can be approximated

for an hR lattice with 3* <3,

hkil is the twin plane; u/p corresponds to X* (u*/p* and u°/p°

for the two dual cases); the other parameters are defined in the text.

3* hk.1 w*/p*  u°/p° Pl+ Ph
10.1 1/4 2/2 1+...+1
1 dual (6*1)
01.2 2/2 4/1 1+...+1
dual (6*1)
3*  hkl  p/p P Pl+ Ph 9.p
1 104 4/1 1,4 2+1 all
02.1 1/4 4,1 142 all
S*  hkl  u/p p,u' pl+ph  PI+Ph ap
10.2 6/3 3,6 3+3 3+3 all
01.1 3/6 6,3 3+3 3+3 all
10.10 10/1 1,10 5+1 5+1 all
2 05.1 1/10 10,1 1+5 1+5 all
50.2 2/5 5,2 1+5 145 all
01.5 5/2 2,5 5+1 5+1 all
40.1 1/16 8,1 1+1 2*1+4 odd+
01.8 16/1 1,10 1+1 4+2%1 odd-
10.16 16/1 1,16 8+1 8+1 all
08.1 1/16 16,1 1+8 1+8 all
70.4 4/7 7,4 2+7 2+7 all
02.7 7/4 4,7 7+2 7+2 all
50.8 8/5 58 4+5 4+5 all
04.5 5/8 8,5 5+4 5+4 all
214 4/1 1,4 2+7 2+7 all
3 12.2 2/2 1,2 1+2 2%1+7 odd+
21.1 1/4 2,1 1+2 2%1+7 odd-
70.1 1/28 14,1 1+2 2%1+7 odd+
01.14 28/1 1,14 2+1 7+2%1 odd—
10.7 14/2 2,7 2+1 7+2%1 odd—-
07.2 2/14 7,2 1+2 2*1+7 odd+
20.5 10/4 4,5 1+2 5+2*%2 odd—
05.4 4/10 5,4 2+1 2*2+5 odd+

in the same way by two rational exact coincidence
orientations. As demonstrated above, these two exact
orientations are described by a periodic arrangement
of elementary units; in the case of an irrational
orientation the arrangement is no longer periodic but
is defined by a deterministic rule and therefore
ordered; the arrangement is quasiperiodic. The rule
defining this quasiperiodicity is the same as that
defining the coefficient of the linear combination of
elementary units characteristic of the irrational
orientation, and this linear combination is unique.

The orientation defined by this (m, u, v, w), all
relatively prime integers, can be described, for any
¢/a, by a quasiperiodic arrangement of Z"™.

Mechanical twins in h.c.p. metals

As shown above, (1012) mechanical twins in h.c.p.
metals are described by the quaternion (0, 2, 1, 1). By
plotting for this quaternion F(ZX,c/a), ie X=
(3v+u)/a and a=1o0r3,asetof 3" (...7,6,5,
4,3,2,3,4,5,6,7,...)and a unique lim =2 appear
in Fig. 1: _

As an example (1012) mechanical twins in zinc
[(¢/a)ex=1-856, ] will be described by the following
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algorithm:
3 ouy c/la X" u/v c/a then X% p*/u*
2 3/1 1-732, 3 6/1 2:449; then 5 9/2
2 3/1 1-732, 5 9/2 2:131; then 7 12/3
(4/1)
2 3/1 1:732, 7 12/3 2-000, then 9 15/4
2 31 1732, 9 154 1936, then 11 18/5
2 3/1 1-732, 11 18/5 1-897, then 13 21/6
(1/2)
2 3/1 1:732, 13 21/6 1-870g then 15 24/7
15 24/7 1-851 13 21/6 1-870; then 28 45/13
15 24/7 1-851, 28 45/13 18605 then 43  69/20
15 24/7 1-851, 43 69/20 1-857, then 58 93/27
(31/9)
58 93/27 1-855, 43 69/20 1-857, then 101 162/47
58 93/27 1-855, 101 162/47 1-8565 then 159 255/74
58 93/27 1-855, 159 255/74 1:856; then 217 348/101
c/a=1-856,

with the simple rule " =3'+3" u"=u'+u", v*=
v'+v" and up to a chosen precision.
With the following notation for the limiting
boundaries:
b un/v c/a

2 3/1 1732,  asA
3 6/1 2-449; as B,
the successive approximants are noted:
3 ulv c/a
5 9/2 2121; AB
7 12/3 2:000, AABor2AB
9 15/4 1936, 3AB
11 18/5 1897, 4AB
13 21/6 1870, SAB
15 2477 1851, 6AB
28 45/13 1-860; 6ABSAB
43 69/20 1857, 6AB6ABSABor2(6AB)SAB
58 31/9 1855, 3(6AB)SAB
101 162/47 1-856, 3(6AB)SAB2(6AB)SAB
159 255/74 1-856, 3(6AB)SAB3(6AB)SAB 2(6AB)SAB

217 348/101 1-856, 3(6AB)SAB...3(6AB)SAB2(6AB)SAB

and finally for the real material zinc [(c/a)., =
1:856,_], a quasiperiodic arrangement of

B units (X =3) in a matrix A (2 =2),
or 5AB units (X =13) in a matrix 6AB (215),
or 2(6AB)5AB units (2 =43) in a matrix
3(6AB)5AB (X =58).

Generally, (1012) mechanical twins in h.c.p. metals
(Fig. 4) will be best described by a 3 =2, u/v=3/1
perturbed by a quasiperiodic arrangement of B, or

c/a 1.5 1.6 1.7 18 19 20 2.1 2%
T 5 T ° T ; 5
° ol g L1 2 1 " 39 ° °
° 11 °
10 Jdd 3 o
° ° 15 5,0 °
o l ‘ o
o l l° Dl o o
o o o o
2 o ° o' o ° 0 o
° b 1 © o | o ° °
° o o o o o
o | o o o bm o °
0 ° o © lg o ° ° ° °
o © ° ° o o ° ° ° °
o o g P o o ° o o
0 o o o o o
o o 4 lo ) o [ lo o °o 4
o o o o o ° o o o
40 0 ° % o 4 o ° ° oo ° o o °
o o o o ° 3 o o o o o
o o o o
o % o 460 b47 o o 4 ol 0o o o ° o 4
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PO o 40 °© 5.0 o o o o5 © o o o o
o © | °1o 4 o o o ol o ©° ° o
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Ti Mg Zn

Fig. 4. Enlargement of the plot of Fh for the (1012) mechanical
twin: 1'4=<c¢/a=2-2 and X up to 60. The experimental values
of c¢/a of Ti (1.587,_), Mg (1.623, ) and Zn (1.856, ) appear
as dashed lines.

NEAR-COINCIDENCE ORIENTATIONS IN HEXAGONAL MATERIALS

B', units suchas ¥ =3, u/v=6/1 (B) for Zn and Cd
and 2 =3, u/v=3/2 (B’) for Mg, Zr, Ti,.... Each
material, for each particular value of ¢/a, defines a
particular quasiperiodicity of minor units.

Best approximant

(2 <50)

Metal  (¢/a)ex 2 w/v quasiperiodicity
Ti 1-587, 46 63/25 ...3(B'4A)B'5A. ..
Mg 1623, 47 66/15 ...2(B'6A)B"7A...
Zn  1-856, 43 69/20 ...2(6AB)SAB....

All the other usual mechanical twins (1011), (1122),
(1121) can be reconsidered in the same way following
the values of 2™ and Z"™ in Table 3.

Interfaces in tungsten carbide

In tungsten carbide-cobalt (WC-Co) composites,
interfaces in the hard phase [WC, (¢/a)e, =0:976, ],
described in a hexagonal Bravais lattice, show often
a low-energy configuration which has been described
by =2, u/v=1 and a quaternion (0,1,1,1)
(Hagege, Nouet & Delavignette, 1980). This case
belongs to the same subset as the (1122) twins in
h.c.p. metals (see Table 2). In that case 3 = (v+pu)
(e=1 for any u, ») and 3"™ and 2™ are defined
as follows:

(c/a)* 1/6 1/5 1/4 1/3 1/2 1/1 2/1 3/1 4/1 5/1 6/1 ...
£ 7 6 S5 4 3 2 3 4 5 6 1
Stim
This orientation will be described by the following
algorithm:

S u/v c/a > u/v c/a then 3% pt/ut

3 1/2 0707, 2 1/1 1000, then S5  2/3
5 2/3 0816s 2 1/1 1000, them 7  3/4
41 20/21 0975, 2 1/1 1000, then 43 21/22
41 20/21 0975, 43 21/22 0977, then 84 41/43
c¢/a=0-976s.
With the following notation for the limiting
boundaries:
2 w/v c/a
2 1/1 1000, as A
3 1/2 0-707, as B,
cl/a 25 26 27 28 29
z o !
1° 5
| 6 °
8 | : °
° o
10 o ° | o
°° ° 5 I o
o°° o ° ! o °
20 ooo o ] ° o q
K o ﬂol °
oo o o o °
$ ° °° [ ° o ©
° o
° o ™ o® 0
kY s o K o | 0® o
3 ° o ° | o o
(? - ) o °
% § Oo °° o ° OOQT:S ° o ° ° o
40
ALRO3

Fig. 5. Enlargement of the plot of Fr for the rhombohedral twin:
2:4=c/a=3-4 and £ up to 40. The experimental value of ¢/a
of alumina appears as a dashed line.
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the successive approximants are noted:
b w/v c/a

5 2/3 0-8165 BA

7 3/4 0-866¢ BAA or B2A
41 20/21 0-975, B19A

43 21/22 0-977, B20A

and finally for the real material a quasiperiodic
arrangement of B units (2 =3) in a matrix A (£ =2),
with an average of minor unit every 19 to 20 A on a
first approximation.

Rhombohedral twin in alumina

In the case of alumina (corundum or a-Al,0;: ¢/a =
2-729,), the lattice is AR and the rhombohedral twin
is a common interface (Grimmer et al., 1990) with a
twin plane (01.2)

3 =(p+2p)/38".

3™ and M are defined as follows (cf. also Table 3):

¢/a 046 052 061 077 122 2-45 3.87 490 574 64
w/p 1T 2/11 1/4 2/5 11 4/1 10/1 16/1 22/1 28/1
X s 4 3 2 1* 1° 2 3 4 5

lim
Emin .

This orientation for (¢/ a)e, =2-729, will be described
in Fig 5 by the following algorithm:

> ulp c/a 3 pulp c/a then X u/p c/a
1° 4/1  2:449, 2 10/1 3-873, then 3 14/2 3240,
1° 4/1 2449, 3 14/2 3240, then 4 18/3  3.000,
1° 4/1  2:449; 4 18/3 3000, then 5 22/4 2872,
1° 4/1 2449, 5 22/4 2872, then 6 26/5 2:792
1° 4/l 2449, 6 26/5 2792, then 7 30/6 2-738,
1° 4/1 2449, 7 30/6 2738, then 8 34/7 2:699,
8 34/7 2699, 7 30/6 2738 then 15 64/13 2717,
15 64/13 2717, 7 30/6 2738 then 22 94/19 2724,
22 94/19 2724, T 30/6 2738, then 29 124/25 2727,
29 124/25 2727, 7 30/6 2738, then 36 154/31 2-729
If 1° 4/1 2:4495 is noted A
and 2 10/1 3-8730 s noted B
the successive approximants are noted:
z ulp c/a
3 7/1 3240, AB
4 6/1 3-0000 A2B
5 11/2 2872, A3B
6  26/5 27924 A4B
7 5/1 2738, ASB
8 34/7 2699, A6B
15 64/13 2717 (A6B)(ASB)
22 94/19 2724,  (A6B)2(ASB)
29 124/25 2727, (A6B)3(AS5B)
36 154/31 2729  (A6B)4(A5B)
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and finally for the real material a quasiperiodic
arrangement of B units (£ =2)in amatrix A (X =1°),
with an average of one minor unit B every 5 to 6
major units.
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